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ABSTRACT 

 
Extrinsic calibration between LiDAR and camera has become 
an indispensable task across diverse domains, including 
autonomous vehicles, robotics, and surveillance systems. 
However, existing methods suffer from limited precision due 
to the inaccurate and insufficient detected features caused by 
the sparsity of point-clouds and the inherent ranging errors of 
LiDAR. In this paper, we propose a multi-dimensional 
geometric feature-based calibration method between LiDAR 
and camera. First, a 3D structured calibration target is 
proposed with multi-normal surfaces, edges in different 
directions, and distinctive corner features. Secondly, a point-
plane and angle error-based point-cloud feature detection 
method is designed to establish 3D-2D feature point pairs 
with image features. Finally, a Perspective-n-Point (PnP) 
problem is solved to estimate the extrinsic parameters. The 
experimental results show that the proposed method reduces 
Mean Reprojection Error (MRE) by 0.05 pixels and achieves 
a 70% reduction in Normalized Reprojection Error (NRE) 
compared with state-of-the-art (SOTA) methods under the 
conditions of smaller training size, larger test size, and more 
repeat times. 
 

Index Terms— Extrinsic calibration, LiDAR and 
camera fusion, geometric feature 
 

1. INTRODUCTION 
 
In recent years, there has been a surge of interest in LiDAR-
camera fusion. To better integrate the information from both 
sensors, calibration is fundamentally required to align multi-
sensor data to a unified spatial coordinate system, whose 
precision directly affects the performance of object detection, 
localization, semantic segmentation, etc. However, the 
sparsity of point-clouds and the inherent ranging errors of 
LiDAR pose significant challenges for high-precision 
extrinsic calibration. To address this problem, efforts have 
been made in designing new calibration targets and 
implementing new feature detection methods. 

Among the calibration targets, the checkerboard pattern 
is the most commonly employed, serving as the basis for 
image feature detection [1]. However, the checkerboard 
structure is perceived as a separate planar entity in point-
clouds, with few distinctive features, resulting in inaccurate 

point-cloud feature detection. AprilTags [2][3] and 
LiDARTags [4] change the checkboard pattern to a QR code-
like pattern to provide more intensity features for camera and 
LiDAR [5]. Circular, square or triangular holes were 
introduced to provide more geometric features [6][7], which 
still maintaining a planar structure. Although there are some 
targets with 3D structures [8], the most of them are 
independent regular shapes such as spheres and cubes, which 
lack intrinsic geometric constraints, resulting in limited 
precision of point-cloud feature detection. 

Different calibration targets can provide different 
detectable features, leading to the establishment of different 
feature correspondences and error constraints between 
LiDAR and camera. The most common correspondence is 
matched point pairs. 3D points in point-clouds and 2D points 
in images can establish 3D-2D point pairs, and the extrinsic 
parameters are then obtained by minimizing the reprojection 
error [7][8][9]. 2D points in images can also be transformed 
into the camera coordinate system, establishing 3D-3D point 
pairs with 3D points in LiDAR coordinate system, and the 
extrinsic parameters are then solved by minimizing the 
Euclidean distance [10]. Additionally, point-to-line distance 
[11][12] and point-to-plane distance [1][11] are also 
frequently used as the error functions to solve extrinsic 
parameters. However, existing methods typically employ one 
of these constraints only during the final optimization stage 
while ignoring them in the feature detection stage, leading to 
limited precision in feature detection. The proposed approach 
incorporates a combination of various geometric constraints 
in feature detection, which makes better use of the known 
geometric information, leading to improved accuracy. 

In this paper, a multi-dimensional geometric feature-
based calibration method between LiDAR and camera is 
proposed. First, we introduce a 3D structured calibration 
target with multi-normal surfaces, multi-directional edges, 
and distinctive corner features. Secondly, a point-cloud 
feature detection method is developed based on point-to-sub-
plane distance error and angle error to establish 3D-2D 
feature point pairs with image features. Finally, a PnP 
problem is solved to estimate the extrinsic parameters. The 
experimental results show that MRE and NRE reach below 
0.6 pixels and 0.1 pixels respectively and decreases by 0.05 
pixels and at least 70% compared with SOTA methods under 
the conditions of smaller training size, larger test size, and 
more repeat times. 
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Fig. 1. The pipeline of the proposed method. 

2. PROPOSED METHOD 
 
2.1. Overall Framework 
 
Fig. 1 shows the pipeline of the proposed method. The 3D 
structured calibration target is designed with multi-normal 
surfaces, edges in different directions, and distinctive corner 
features (Sec. 2.2). Time-aligned sequences of images and 
point-clouds are collected with the target placed at 𝑀𝑀 
different positions, denoted as 𝐼𝐼 = {𝐼𝐼𝑖𝑖}𝑖𝑖=1𝑀𝑀  and 𝒫𝒫 = {𝒫𝒫𝑖𝑖}𝑖𝑖=1𝑀𝑀 . 
Then, they are fed into the image feature detection module 
and the point-cloud feature detection module respectively. 

Image adaptive binarization and polygons fitting are 
performed to the input images [13], and the pixel coordinates 
of the image feature points 𝒫𝒫𝑖𝑖2𝑑𝑑 ∈ ℝ16×2  are obtained for 
each 𝐼𝐼𝑖𝑖  after sub-pixel optimization. In point-cloud feature 
detection, we first adopt the pass-through filter to extract the 
region of interest where the target is positioned and the noise 
filter to remove the points that represent the holder of the 
target, resulting in the target point-cloud, denoted as 
𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 = {𝒫𝒫𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑}𝑖𝑖=1𝑀𝑀 . Then we conduct sub-plane 
segmentation (Sec. 2.3) to assign each point to its 
corresponding sub-plane, followed by the calculation of all 
model parameters that uniquely represent the target (Sec. 2.4). 
Furthermore, sub-plane re-segmentation is an alternative to 
improving the initial segmentation results, and the feature 
points calculation module is introduced to obtain the point-
cloud feature points 𝒫𝒫𝑖𝑖3𝑑𝑑 ∈ ℝ16×3 for each 𝒫𝒫𝑖𝑖  (Sec. 2.5). 

Finally, we obtain 3D-2D feature points denoted as 
𝒫𝒫2𝑑𝑑 = {𝒫𝒫𝑖𝑖2𝑑𝑑}𝑖𝑖=1𝑀𝑀 ∈ ℝ16𝑀𝑀×2  and 𝒫𝒫3𝑑𝑑 = {𝒫𝒫𝑖𝑖3𝑑𝑑}𝑖𝑖=1𝑀𝑀 ∈ ℝ16𝑀𝑀×3 , 
and the PnP problem is established to minimize the 
reprojection error of 3D-2D point pairs, 
 𝑻𝑻∗ = argmin

𝑻𝑻

1
16𝑀𝑀

‖𝒫𝒫2𝑑𝑑 − 𝑫𝑫(𝑲𝑲𝑻𝑻𝒫𝒫3𝑑𝑑)‖22. (1) 

where 𝑻𝑻 ∈ SE(3) , 𝑲𝑲 ∈ ℝ3×3 , and 𝑫𝑫(·)  respectively 
represent the extrinsic parameters between LiDAR and 
camera, the camera intrinsic parameters, and the distortion. 
This problem is initialized by EPnP [14] and solved by the 
Ceres solver [15]. 
 
2.2. Calibration Target Design 
 
Fig. 2(a) illustrates our design of the target, a white 3D 
symmetrical structure comprising four symmetric square-

shaped holes and sixteen sub-planes connected at specific 
angles. The holes allow the camera to observe through them, 
facilitating the detection of distinctive corner features. The 
repetitive arrangement of the sub-planes offers multi-normal 
surfaces and edges in different directions for the collected 
point-clouds. 

 
Fig. 2. (a) The calibration target and sub-plane indexes. (b) The details of the 
calibration target. The red arrows indicate four normal vectors, the green 
arrows indicate four intersection line directions of each set, and the red dot 
indicates the intersection point of the four planes. 

We index the sub-planes of our target as 1~16, where 
planes of the same color index are parallel to each other. 
Specifically, the four planes marked in red together form 
three planes with equal distances, as plane 3 and plane 9 are 
co-planar. We formulate plane 1 as 
 𝑎𝑎1𝑥𝑥 + 𝑏𝑏1𝑦𝑦 + 𝑐𝑐1𝑧𝑧 + 𝑑𝑑1 = 0, (2) 
where ‖(𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1)‖ = 1. Then the other two planes can be 
formulated as 
 𝑎𝑎1𝑥𝑥 + 𝑏𝑏1𝑦𝑦 + 𝑐𝑐1𝑧𝑧 + 𝑑𝑑1 + ∆𝑡𝑡 = 0, (3) 

 𝑎𝑎1𝑥𝑥 + 𝑏𝑏1𝑦𝑦 + 𝑐𝑐1𝑧𝑧 + 𝑑𝑑1 + 2 ∗ ∆𝑡𝑡 = 0, (4) 
where ∆𝑡𝑡 represents the known distance. By formulating the 
other three sets of parallel planes in the same way, the whole 
calibration target can be modeled by 16 parameters 
𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎𝑃𝑃 = {𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑑𝑑𝑖𝑖} ∈ ℝ16, 𝑖𝑖 = 1, 2, 3, 4. 
 
2.3. Sub-plane segmentation 
 
We designed a point-cloud segmentation pipeline to assign 
each 𝒑𝒑𝑖𝑖 ∈ 𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑  to its corresponding sub-plane 𝜋𝜋𝑖𝑖 . First, 
𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑  is projected onto the plane passing through the 
farthest point in the direction of 𝒏𝒏𝑏𝑏 ∈ ℝ3 , where 𝒏𝒏𝑏𝑏  is the 
general normal vector of 𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑, resulting in 𝒫𝒫𝑝𝑝𝑏𝑏𝑏𝑏𝑝𝑝, which 
contains four square-shaped holes. The hole centers are 
obtained by searching for the positions within the 
neighborhood of the initial coordinates where the fewest 
number of points fall into the corresponding square [16]. 
Finally, 𝒫𝒫𝑝𝑝𝑏𝑏𝑏𝑏𝑝𝑝 is segmented based on the four hole centers, 

 

           
        (a)                                                       (b) 
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enabling the establishment of correspondences between each 
𝒑𝒑𝑖𝑖 and 𝜋𝜋𝑖𝑖. 

It is noticeable that 𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 is not perfectly symmetrical 
due to the orientation of the target, resulting in inaccurate 𝒏𝒏𝑏𝑏, 
which further affects the accuracy of sub-plane segmentation. 
To enhance the confidence level in the point-to-sub-plane 
correspondences, we discard points with distances from the 
junctions between sub-planes less than the threshold 𝛿𝛿, which 
is set to 1 cm in our method. 
 
2.4. Model parameters calculation 
 
To calculate the model parameters, we introduce the point-to-
sub-plane distance error 𝑒𝑒𝑑𝑑𝑖𝑖𝑑𝑑,  
 𝑒𝑒𝑑𝑑𝑖𝑖𝑑𝑑 = 1

𝑁𝑁
∑ 𝜎𝜎𝑖𝑖 ∙ 𝒅𝒅𝒅𝒅𝒅𝒅(𝒑𝒑𝑖𝑖 ,𝜋𝜋𝑖𝑖)𝒑𝒑𝑖𝑖∈𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , (5) 

where 𝜎𝜎𝑖𝑖  is a binary value indicating whether 𝑝𝑝𝑖𝑖  has its 
corresponding sub-plane 𝜋𝜋𝑖𝑖 , 𝒅𝒅𝒅𝒅𝒅𝒅(𝒑𝒑𝑖𝑖 ,𝜋𝜋𝑖𝑖)  represents the 
distance from 𝒑𝒑𝑖𝑖 to 𝜋𝜋𝑖𝑖, and 𝑁𝑁 is the number of valid points 
where 𝜎𝜎𝑖𝑖 = 1. 

We also introduce the angle error 𝑒𝑒𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 among the four 
normal vectors 𝒏𝒏𝑖𝑖 = {𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖} , 𝑖𝑖 = 1, 2, 3, 4 , as shown in 
Fig. 2(b). We define two types of angles to strengthen the 
constraints. One type is the angles between adjacent normal 
vectors, and the other type is the angles between intersecting 
normal vectors. Using ∠𝑖𝑖𝑝𝑝 to represent the angle between 𝒏𝒏𝑖𝑖 
and 𝒏𝒏𝑝𝑝, the constraints for the two types can be expressed as 
∠12 = ∠23 = ∠34 = ∠14  and ∠13 = ∠24 . Therefore, we 
formulate 𝑒𝑒𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  as: 
𝑒𝑒𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ‖∠12 − ∠23‖2 + ‖∠23 − ∠34‖2 + ‖∠34 − ∠14‖2 + 

                ‖∠14 − ∠12‖2 + ‖∠13 − ∠24‖2. (6) 
Finally, all 16 model parameters are solved by minimizing 

the total error function, 
 𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎𝑃𝑃∗ = argmin

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃
(𝑒𝑒𝑑𝑑𝑖𝑖𝑑𝑑 + 𝑒𝑒𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), (7) 

where the initial value is obtained by RANSAC [17]. 
 
2.5. Sub-plane re-segmentation and Feature Points 
Calculation 
 
The initial segmentation results are improved in this 
operation, resulting in the inclusion of more points in the 
point-to-sub-plane correspondence, as shown in Fig. 1. First, 
the plane equations of all sub-planes are derived from 𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎𝑃𝑃. 
Then, 𝒏𝒏𝑏𝑏 is updated with the average of all normal vectors, 
and the updated coordinates of the four hole centers are 
calculated from the equations. Subsequent segmentation 
steps are the same as before. 

The feature points, i.e., the corners of all the rectangular 
holes, can be calculated from 𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎𝑃𝑃 . Taking the hole 
formed by one set of parallel planes as an example, as shown 
in Fig. 2, we first get the intersection point 𝒑𝒑𝑖𝑖𝑎𝑎𝑖𝑖 through an 
optimization problem, 
 𝒑𝒑𝑖𝑖𝑎𝑎𝑖𝑖∗ = argmin

𝒑𝒑𝑖𝑖𝑖𝑖𝑖𝑖
∑ 𝒅𝒅𝒅𝒅𝒅𝒅(𝒑𝒑𝑖𝑖𝑎𝑎𝑖𝑖 ,𝜋𝜋𝑖𝑖)4
𝑖𝑖=1 . (8) 

In addition, the intersection line direction 𝒍𝒍𝑖𝑖  of the 
corresponding adjacent planes (arranged clockwise) can be 
obtained by the cross product of their normal vectors. 
Therefore, the feature points fall on the lines formed by the 
intersection point 𝒑𝒑𝑖𝑖𝑎𝑎𝑖𝑖  and the corresponding intersection 
line directions, and can be obtained by 
 𝒑𝒑𝑖𝑖3𝑑𝑑 = 𝒑𝒑𝑖𝑖𝑎𝑎𝑖𝑖 + 𝜃𝜃𝒍𝒍𝑖𝑖, 𝑖𝑖 = 1, 2, 3, 4 (9) 
where 𝜃𝜃 represents the fixed distance calculated from known 
geometric information. 
 

3. EXPERIMENTS AND RESULTS 
 

3.1. Experimental Setup 
 
The proposed method was validated in a real environment. 
Table 1 shows the specifications of LiDAR and camera. 
Table 1. Sensor Specifications. 

Modality Device Resolution FOV 

LiDAR 
LSLIDAR 

CH128x1 [18] 128 layers, 0.4° 120° × 25° 

Camera FLIR Blackfly  
BFS-PGE-16S2 [19] 1440×1080 82.9° × 66.5° 

To better verify the effectiveness and robustness of the 
proposed method, we conducted experiments in both indoor 
and outdoor scenes, as shown in Fig. 3. For both scenes, we 
placed the calibration target evenly in front at distances 
ranging from approximately 3 to 10 meters and collected 
image-point cloud pairs with 𝑀𝑀 = 50 different poses. 

 
Fig. 3. Experimental scenes. The left is the indoor scene and the right is the 
outdoor scene. 

3.2. Re-projection evaluation 
 
Since it is hard to obtain the ground truth extrinsic parameters 
between LiDAR and camera in realistic environment, we use 
MRE and NRE as metrics to evaluate the effectiveness of the 
proposed method: 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
16𝑀𝑀

∑ �𝒫𝒫𝑖𝑖2𝑑𝑑 − 𝑫𝑫(𝑲𝑲𝑻𝑻𝒫𝒫𝑖𝑖3𝑑𝑑)�
2
216𝑀𝑀

𝑖𝑖=1  (10) 

 𝑁𝑁𝑀𝑀𝑀𝑀 = 1
16𝑀𝑀

∑ 𝑑𝑑𝑖𝑖
𝑑𝑑𝑚𝑚𝑏𝑏𝑚𝑚

�𝒫𝒫𝑖𝑖2𝑑𝑑 − 𝑫𝑫(𝑲𝑲𝑻𝑻𝒫𝒫𝑖𝑖3𝑑𝑑)�
2

216𝑀𝑀
𝑖𝑖=1  (11) 

where 𝑑𝑑𝑖𝑖 denotes the distance from 𝒫𝒫𝑖𝑖3𝑑𝑑 to LiDAR, and 𝑑𝑑𝑃𝑃𝑏𝑏𝑚𝑚  
denotes the maximum of all 𝑑𝑑𝑖𝑖. 

We evaluate MRE and NRE under a different number of 
placements. 𝑁𝑁  placements are randomly selected from a 
previously collected dataset as training data, while the 
remaining placements reserved for test data. For each 𝑁𝑁 ∈
[1,15] , we repeat the random selection 100 times. Fig. 4 
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shows the MRE and NRE boxplots. The results indicate that 
MRE and NRE reach stable values when 𝑁𝑁 reaches 4 in both 
indoor and outdoor scenarios, where MRE is less than 0.6 
pixels and NRE is less than 0.1 pixels. 

 
Fig. 4. MRE and NRE under a different number of placements. 

3.3. Comparison against other methods 
 
Given the diverse input data of various target-based 
calibration methods, many of which are not open-source, we 
selected SOTA methods with similar metrics to ours for 
comparison. We then evaluated our results against the best-
performing one reported in each method. Table 2 and Table 
3 compare MRE and NRE with comparison methods, which 
are Xie’s work [9], Fan’s work [8], Li’s work [20], Cui’s 
work [21] and Lai’s work [22]. 

The results indicate that the proposed method 
outperforms all other methods under stricter experimental 
conditions, i.e., smaller training size, larger test size, and 
more repeat times. Specifically, MRE shows an improvement 
of 0.05 pixels compared with [20] under the same training 
size and a much larger test size, and NRE decreases by at least 
70% compared with SOTA methods. 
 
3.4. Subjective results 
 
For subjective experiments, we project the point-clouds onto 
the images using the obtained extrinsic parameters. Fig. 5 
shows that the point-clouds and images are well-aligned at 
columns, leaves, and other positions. 
 
3.5. Complexity analysis 
 
To evaluate the complexity, the execution time of each 
algorithm module is retrieved using a PC with Intel® 
Core(TM) i7-9750 CPU @ 2.60 GHz with 13.3GB RAM and 
64-bits Ubuntu 18.04 operating system. The average 
execution time for image feature detection is 0.2075 seconds, 

for point-cloud feature detection is 2.2248 seconds, and for 
solving extrinsic parameters is 0.0750 seconds. Consequently, 
with 4 target placements considered, the entire calibration 
process can be accomplished within 10 seconds, and the most 
time-consuming part is the point-cloud feature detection. We 
also measure the execution time of other open-source 
methods in the same way. Cui’s work [21] and Lai’s work 
[22] take approximately 10 seconds and 8 seconds 
respectively, which is similar to ours. 
Table 2. MRE comparison. “Training Size”, “Test Size”, “Repeat Times” 
respectively refer to the number of target placements in training data, test 
data, and the repeat times for random selection. The symbol “~” indicates 
that the item is not mentioned in their papers. 

Method Training 
Size Test Size Repeat 

Times 
MRE 
/pixel 

Xie et al. [9] 8 1 5 1.12 
Fan et al. [8] 36 ~ ~ 1.01 
Li et al. [20] 4 1 ~ 0.56 

Proposed 4 46 100 0.51 

Table 3. NRE comparison. 

Method Training 
Size Test Size Repeat 

Times 
NRE 
/pixel 

Cui et al. [21] 
Lai et al. [22] 

Proposed 

~ 
<=20 

4 

~ 
~ 
46 

~ 
30 

100 

2.11 
> 0.3 
0.09 

 
Fig. 5. Re-projection results. 

4. CONCLUSIONS 
 
This paper presents a multi-dimensional geometric feature-
based calibration method between LiDAR and camera. First, 
a novel calibration target with a well-defined 3D structure is 
introduced. Secondly, a point-cloud feature detection method 
is developed based on the introduced calibration target. 
Finally, a PnP problem is solved to estimate the extrinsic 
parameters. The experimental results show MRE and NRE 
reach below 0.6 pixels and 0.1 pixels respectively and 
decrease by 0.05 pixels and at least 70% compared with 
SOTA methods under stricter experimental conditions. 
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