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occlusions from scattered particles [19]. Thus, LF atmospheric 
descattering methods exhibit a significant advantage in 
enhancing scattering removal performance. 

However, a major limitation of LF atmospheric descattering 
methods is their reliance on the LF sampling rate, defined as 
the density of image samples per unit area [20]. In multi-view 
systems used for LF atmospheric descattering, this sampling 
rate corresponds to the density of cameras per unit area, 
determining the camera spacing in the systems. For artifact-
free LF reconstruction, the minimum sampling rate is 
calculated based on the LF spectral support without aliasing 
[21], which dictates the maximum camera spacing 𝛥𝑡𝑚𝑎𝑥  in
the systems. The LF spectrum is determined by the scene’s 
depth range [21], texture complexity [22], surface reflectance 
[23] and occlusions [24]. In scattering scenarios, the spectrum
is further attenuated by scattering media, leading to a loss of
high-frequency details. Consequently, the unreasonable
sampling rate often results in blurry or indistinguishable
reconstructions. Increasing the LF sampling rate enhances the
number of signal photons—those reflected by the target and
transmitted without scattering [25]—thus improving
reconstruction quality, but also raising acquisition and
processing complexity. Therefore, it is essential to define an
optimal minimum LF sampling rate that balances
reconstruction quality and acquisition complexity in scattering
scenarios.

To the best of our knowledge, no existing LF sampling 
theory has been explored in scattering scenarios. To fill this 
research gap, in this paper, we proposed a LF sampling theory 
in atmospheric scattering scenarios. Our theory achieves 
optimal scattered LF reconstruction quality and significantly 
improved reconstruction efficiency by determining the 
minimum scattered LF sampling rate. The primary 
contributions of this paper are: 
⚫ We propose an analytical expression of atmospheric point

spread funciton (APSF) integrating acquisition system
parameters, offering an accurate description of light
propagation in scattering media. Derived from the camera
model, radiative transfer equation, and a modified
generalized Gaussian distribution, our APSF offers
precisely represents scattering effects without relying on
infinite series, making it adaptable to various scattering
parameters and acquisition systems.

⚫ We derive the LF spectrum in atmospheric scattering
scenarios using the proposed APSF, which characterizes
the attenuated spectral support in scattering scenarios,
incorporating both scene and acquisition system
information. Based on the LF spectrum, for the first time,
we determine the minimum atmospheric scattered LF
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 Abstract—Light field (LF) atmospheric descattering methods 
using multi-view images from camera arrays offer significant 
advantages for solving strong scattering due to their ability in 
exploiting high-dimensional light information. However, the 
relationship between performance and scattered LF sampling 
rate (i.e., the density of samples per unit area) is an unknown 
coupling, affecting acquisition and processing complexity. In this 
paper, we define the minimum atmospheric scattered LF 
sampling rate under optimal descattering quality, based on 
attenuated spectral support in scattering scenarios derived from 
the proposed atmospheric point spread function (APSF). The 
proposed APSF integrates the camera model, radiative transfer 
equation, and modified generalized Gaussian distribution (GGD) 
to describe multiple scattering. For any scattering parameters, 
the proposed APSF can be directly derived without infinite series, 
ensuring full adaptability to all acquisition systems through the 
integration of system model. Combining APSF with scene and 
acquisition system information, the scattered LF spectrum is 
determined, and consequently the minimum atmospheric 
scattered LF sampling rate is derived for the first time. 
Experimental results demonstrate the accuracy, effectiveness, 
and robustness of the proposed atmospheric scattered LF 
sampling theory through comparisons of atmospheric 
descattering performance across different LF sampling rates, 
object types, scene depths, and scattering intensities. The 
proposed method achieves a reduction in the number of 
acquisition cameras by an average of 78.4% while maintaining 
processing quality, which significantly enhances the applicability 
of LF atmospheric descattering methods. 

Index Terms—light field, sampling theory, scattering imaging, 
computational imaging 

I. INTRODUCTION

IGHT field (LF) atmospheric descattering methods [1-11]L use light intensities and angles recorded by multi-view
imaging to improve the atmospheric descattering 

performance in strong scattering. Compared with traditional 
atmospheric descattering methods [12-17] that rely on two-
dimensional intensity data, LF atmospheric descattering 
methods present higher capabilities in imaging under strong 
scattering scenarios [2], reducing noise for higher signal-to-
noise ratios [18], extracting depth information for more 
accurate scattering process inversion [8], and eliminating 
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sampling rate. By applying this theory, the optimal 
atmospheric descattering quality can be achieved with 
minimal sampling. 

⚫ Comprehensive experiments demonstrate that the
proposed APSF outperforms existing analytical
expressions in terms of accuracy and robustness, and
effectively establishes the minimum scattered LF
sampling rate. The LF sampling theory is validated in
real-world atmospheric scattering scenarios through
deployment on a drone platform, enabling precise
reconstruction of scattered light fields. Additionally, our
approach reduces the number of acquisition cameras by
78.4% compared to current LF atmospheric descattering
systems while maintaining equivalent processing quality.
This reduction significantly decreases system complexity
and broadens the applicability of LF atmospheric
descattering technologies.

The remainder of this paper is organized as follows. Section 
II details the related research work in light field sampling and 
atmospheric descattering. Section III describes the proposed 
analytical expression of APSF and the proposed light field 
sampling in the atmospheric scattering scenarios. The 
experimental setup, the correctness, effectiveness and 
robustness of the proposed analytical expression of APSF and 
the proposed LF sampling theory are provided in Section IV. 
Conclusions are drawn in Section V. 

II. RELATED WORKS

A. Light Field Atmospheric Descattering Methods 
Existing light field (LF) atmospheric descattering methods

[1-11] are classified into spatial domain [1-9] and frequency 
domain approaches [10, 11], exploiting differences in the 
spatial and angular distribution of scattered and ballistic light 
[1-9] and the epipolar-plane image (EPI) spectrum [10, 11], 
respectively. In spatial domain methods, photon counting uses 
maximum-likelihood estimation to estimate parameters of the 
scattering Gaussian model and remove scattering [1]. Gamma 
correction and histogram equalization [3], as well as color 
space conversion [4], are employed to enhance contrast, while 
statistical estimation [2] and adaptive statistical methods [5] 
are used to isolate ballistic photons. Additionally, guided filter 
[6], refocusing [7], all-in-focus imaging [8], and polarization 
[9] are applied to suppress scattering noise and eliminate
occlusions. In frequency domain methods, object depths are
estimated using grey level local variance [10], followed by the
application of a hyperfan filter for adaptive atmospheric
descattering [10, 11].

B. Light Field Sampling Theories 
Light field sampling theories offer a systematic approach to

determining optimal sampling rates across diverse scene 
conditions. Chai et al. [21] were the first to analyze the 

spectrum of the plenoptic function, deriving the minimum LF 
sampling rate for Lambertian and non-occlusion scenes. They 
established the relationship between the Nyquist sampling rate 
in the LF and parameters such as the minimum and maximum 
object depth, camera focal length, and pixel size. This spectral 
analysis was extended to non-Lambertian scenes [23, 26], 
scenes with occlusions [24, 27], and complex textured scenes 
[22, 28, 29]. For non-Lambertian scenes, as an object’s surface
approaches perfect reflectivity, the frequency band broadens, 
requiring a higher LF sampling rate [26]. Using the Phong 
model [30], the minimum sampling rate for these scenes is 
derived [23]. In scenes with object occlusions, the LF 
spectrum segments at occlusion edges, necessitating higher 
sampling rates for larger occlusion areas [24]. For complex 
textured scenes, the LF spectrum consists of two regions; the 
minimum sampling rate is defined by quantizing the texture 
information, with increases in the maximum frequency of the 
texture signal leading to higher sampling rates [22, 28]. 
However, all these models assume straight-line light 
propagation, which is invalid in scattering scenarios where 
light undergoes multiple refractions and reflections. 

C. Atmospheric Point Spread Function
To model LF propagation in fog, atmospheric point spread

function (APSF) was derived from radiative transfer equation 
(RTE) using Legendre polynomial series [31]. APSF can be 
calculated by giving the optical thickness and forward 
scattering parameters. However, the resulting APSF, 
expressed as an infinite series, presents a complex 
mathematical expression and high computational complexity, 
limiting its practical applications. To remove the infinite 
series, Metari et al. [32] and Wang et al. [33] proposed a new 
APSF kernel using a generalized Gaussian distribution (GGD) 
approximation. Despite this improvement, their models still 
lack accuracy and cannot adapt to changes in the acquisition 
system, as they do not consider the mapping relationship 
between the radiation angles in the APSF and the image plane, 
nor the parameters of the acquisition system. 

III. PROPOSED THEORY

This section details the proposed light field (LF) sampling 
theory in atmospheric scattering scenarios. Initially, the 
analytical expression of the atmospheric point spread function 
(APSF) integrating acquisition system is established to model 
light propagation in scattering media. Then, the LF spectrum 
in atmospheric scattering scenarios is derived based on the 
proposed APSF. Finally, the optimal reconstruction filter is 
defined, and the minimum LF sampling rate required to 
achieve optimal atmospheric descattering quality in 
atmospheric scattering scenarios is determined. 

A. Proposed Analytical Expression of APSF Integrating Acquisition
System Parameters 
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The proposed analytical expression of APSF integrating 
acquisition system is derived based on the camera model, 
radiative transfer equation (RTE), and modified generalized 
Gaussian distribution (GGD). APSF describes the camera 
response for the light rays emitted from an isotropic point light 
source and transmitted through the atmosphere. Considering 
that multiple scattering predominantly occurs within a 
spherical region for a point light source [34], as shown in Fig. 
1, the scattered light received by the image plane emanates 
from rays within a cone (bounded by the dashed gray line in 
Fig. 1). Defining the included angle of the cone as the imaging 
field of view (FOV), the imaging response for light at 
radiation angle 𝜃 modeled by RTE [35]: 
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where I is the radiance; T is the optical thickness; 𝛼  is the 
angle between the incident light direction (𝜃 ′,𝜙 ′)  and the 
scattered light direction (𝜃,𝜙) passing through the scattering 
particle; 𝜇 = 𝑐𝑜𝑠 𝜃 and 𝜇′ = 𝑐𝑜𝑠 𝜃 ′; 𝑃(∙) is the phase function 
[36] of the scattered particles. It can be solved by Legendre 
polynomial extension as [31]: 
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where q is the forward scattering parameter, 𝐿𝑚  is the 
Legendre polynomial of order m. Since m can be infinite, the 
Legendre polynomial extension solution is not easy to be 
calculated and applied to other models, limiting the real 
applications. Moreover, the omission of regarding the 
acquisition system compromises its accuracy in applications. 

To integrate the acquisition system, the proposed APSF is 
defined on the image plane rather than in the radiation angle 𝜃 
coordinate, thereby projecting Eq. (2) onto the image plane. 
With the imaging FOV taken as 0.2 degrees for the region of 
significant multiple scattering (verified in Supplementary 
Material Note 1), application of the law of sines within △ 𝑂𝐴𝐿 
and △ 𝑂𝐵𝐿 yields the following derivation: 

 

( )

2sinsin 90

sin sin

FOV
z R

z R
  

=

=
−

. (3) 

Thus, the relationship between radiation angle 𝜃  and the 
coordinates v on the image plane is given by: 
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where f is the camera focal length. From Eq. (4), it is evident 
that 𝜃 is influenced by both f and v. Given that 𝑡𝑎𝑛 𝛾 = 𝑣/𝑓 
and 𝛾  ranges within [−𝐹𝑂𝑉/2,𝐹𝑂𝑉/2], 𝐴 = 𝑣/𝑓  spans range 
[− 𝑡𝑎𝑛(𝐹𝑂𝑉/2) , 𝑡𝑎𝑛(𝐹𝑂𝑉/2)]. Consequently, Eq. (4) can be 
expressed as: 
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Since 𝜇 = 𝑐𝑜𝑠 𝜃, substituting 𝜇 into Eq. (2) yields a series 
of APSFs for different optical thicknesses T and forward 
scattering parameters q, as shown in Supplementary Material 
Note 2. Considering the range [0, 1] of the APSF and the 
complexity of the scale parameters in GGD, we propose a 
modified GGD for more accurate description of the APSF: 
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pA
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where p and σ are the shape parameter and variance of APSF, 
respectively. In Supplementary Material Note 2, we generate a 
series of APSFs under various optical thicknesses T and 
forward scattering coefficients q, and approximate them using 
Eq. (6) with trust-region algorithms [37], yielding the shape 
parameter p and variance σ of APSF: 
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Substituting 𝐴 = 𝑣/𝑓 into Eq. (6), the proposed APSF is: 
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p
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and its Fourier transform is: 
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where 𝐹{⋅} denotes the Fourier transform operator, and 𝛺𝑣  is 
the Fourier domain representation of 𝑣. 

Based on the above analysis, we use RTE, camera model 
and modified GGD to model analytical expression of APSF 
integrating acquisition system, forming the foundation of the 
LF sampling theory in scattering scenarios. 

B. Proposed Light Field Spectrum in Atmospheric Scattering 
Scenarios 

To describe the LF in atmospheric scattering scenarios, the 

 
Fig. 1. Schematic diagram of APSF in multiple scattering. 
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4D light field model 𝑙(𝑢, 𝑣, 𝑠, 𝑡)  is used, characterizing the 
light rays propagating from the image plane (𝑢, 𝑣)  to the 
camera plane (𝑠, 𝑡)  [21]. For simplicity, the derivation is 
conducted on 𝑙(𝑣, 𝑡) , which can be directly extended to 
𝑙(𝑢, 𝑠). 

Taking the general assumption that the LF propagates by 
Lambertian reflections with no occlusion [21], the Fourier 
transform of light field 𝑙(𝑣, 𝑡)  is denoted by 𝐿(𝛺𝑣 ,𝛺𝑡) . 
Treating the scattered images acquired by the camera at (𝑣, 𝑡) 
as the convolution of non-scattered images and the proposed 
APSF in Eq. (9), the scattered LF in the frequency domain 
𝐿𝑠(𝛺𝑣 ,𝛺𝑡) is given by: 
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where ∗ denotes the convolution operator. 
Considering parallax, as shown in Fig. 2, the position of a 

point on the object plane differs on the image planes of 
cameras 0 and t, designated as 𝑣0 and 𝑣 ′. Then the parallax is 
calculated as 𝑣0 − 𝑣 = 𝑓𝑡

𝑧
, where f is the camera focal length 

and z is the object-camera distance. Thus, the LF spectrum at a 
constant depth z is:  
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where 𝐿(𝛺𝑣) is the Fourier transform of 𝑙(𝑣, 0). 
When the minimum depth 𝑧𝑚𝑖𝑛  and maximum depth 𝑧𝑚𝑎𝑥  

of the scene are known, from Eq. (11), the LF spectral support 
is bounded by 𝑓

𝑧𝑚𝑖𝑛
𝛺𝑣 − 𝛺𝑡 = 0  and 𝑓

𝑧𝑚𝑎𝑥
𝛺𝑣 − 𝛺𝑡 = 0 . The 

primary difference from non-scattering scenarios is the APSF 

term 𝑒−(
𝜎𝑓𝛺𝑣
2 )

𝑝

, which attenuates the scattered LF spectrum. 
Considering the pixel size 𝛥𝑣, Fig. 3 depicts the scattered LF 
spectrum (region in blue) and the optimal reconstruction filter 
in non-scattering scenarios (lined in red). The upper frequency 
bound of the optimal reconstruction filter in non-scattering 
scenarios equals 𝜋

𝛥𝑣
 and its frequency width of the optimal 

reconstruction filter |𝑃𝑚𝑎𝑥𝑃𝑚𝑖𝑥| =
𝜋𝑓

𝛥𝑣
( 1
𝑧𝑚𝑖𝑥

− 1
𝑧𝑚𝑎𝑥

) 

determining the minimum LF sampling rate as 𝛥𝑡𝑚𝑎𝑥 =
2𝜋

|𝑃𝑚𝑎𝑥𝑃𝑚𝑖𝑥|
 [21]. This frequency bound is wider than that of the 

scattered LF spectrum due to APSF induced attenuation. The 
greater the object depth z (i.e. the larger the fog’s optical 
thickness), the greater its spectral attenuation. 

This attenuation effect is verified by collecting the LF 
spectrum under different scattering intensities. Three color 
images, shown in Fig. 4(a), are placed at depth z = 0.79m, 
0.86m, and 0.95m (representing minimum, intermediate, and 
maximum depth of the scene in spectral) in an artificial fog 
chamber (the details of the experimental system see Section 
ⅠV.A). Within the optical thickness range of T = 0 to 2.3, 
scattered LF data are captured using a moving camera array 
under varying scattering intensities, with each dataset 
comprising 179 views spaced 2 mm apart. By extracting the 
epipolar-plane image (EPI) from these collected data, the 
scattered LF spectral supports under different scattering 
intensities can be obtained, as shown in Fig. 4(b). 

It is evident that with increasing scattering intensity (from T 
= 1.2 to 2.3), the LF spectrum is progressively attenuated due 
to the loss of high frequency information. This is consistent 
with Eq. (10), where an increase in T leads to higher values of 

σ and p in 𝑒−(
𝜎𝑓𝛺𝑣
2 )

𝑝

, resulting in corresponding spectrum 
attenuation. Therefore, a new optimal reconstruction filter 
needs to be designed, and the upper frequency bound on the 
𝛺𝑣  axis must be determined to calculate the minimum 
scattered LF sampling rate in scattering scenarios. 

C. Proposed Optimal Reconstruction Filter and the Minimum Light 
Field Sampling Rate in Scattering Scenarios 

 

 
4 2pWIDTH
f
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Then, the upper frequency bound of the optimal 
reconstruction filter in scattering scenarios equals the 
maximum of 𝜋

𝛥𝑣
 and 𝑊𝐼𝐷𝑇𝐻

2
 (the value of WIDTH on the 

positive semi-axis) to accommodate scene complexity and the 
scattering effect. As objects move farther in the scene, the 

 
Fig. 2. Schematic diagram of the 2D light field of camera 0 
and camera t observing a point in scattering scenarios. 

 

 
 

Fig. 3. Schematic diagram of the LF spectrum in scattering 
scenarios (region in blue) and the optimal reconstruction 
filter in non-scattering scenarios (lined in red). 
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optical thickness of the scattering media increases, causing p 
and σ in APSF to increase, resulting in a smaller WIDTH 
(proved in Supplementary Material Note 3). To ensure the 
optimal reconstruction filter works for the entire scene, 
WIDTH calculated at the minimum object depth 𝑧𝑚𝑖𝑛 , denoted
as 𝑊𝐼𝐷𝑇𝐻𝑚𝑖𝑛, is used. Therefore, the upper frequency bound
of the optimal reconstruction filter in scattering scenarios 
equals 𝑚𝑎𝑥 ( 𝜋

𝛥𝑣
,𝑊𝐼𝐷𝑇𝐻𝑚𝑖𝑛

2
) . Thus, the minimum LF sampling 

rate in atmospheric scattering scenarios can be derived as: 
22 ,
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where |𝑃𝑚𝑎𝑥
𝑠 𝑃𝑚𝑖𝑥

𝑠 | = 𝑓 ( 1
𝑧𝑚𝑖𝑥

− 1
𝑧𝑚𝑎𝑥

)𝑚𝑎𝑥 ( 𝜋

𝛥𝑣
,𝑊𝐼𝐷𝑇𝐻𝑚𝑖𝑛

2
) 

corresponds to the frequency width of the scattered LF, as 
shown in Fig. 5. 

Fig. 5 illustrates that when 𝜋/𝛥𝑣 >𝑊𝐼𝐷𝑇𝐻𝑚𝑖𝑛/2 , the
upper frequency bound of the optimal reconstruction filter in 
scattering scenarios attenuates to 𝑊𝐼𝐷𝑇𝐻𝑚𝑖𝑛/2 , and its

frequency width also decreases from |𝑃𝑚𝑎𝑥𝑃𝑚𝑖𝑥| to
|𝑃𝑚𝑎𝑥

𝑠 𝑃𝑚𝑖𝑥
𝑠 |. Using the derived minimum atmospheric scattered

LF sampling rate, an optimal balance between LF 
acquisition/processing complexity and reconstruction quality 
can be achieved, as demonstrated in Section IV.D. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the correctness, effectiveness, and 
robustness of the proposed atmospheric scattered LF sampling 
theory and APSF analytical expression are demonstrated. 
First, the experimental setup and data acquisition are 
introduced. Then, the subjective and objective qualities of 
different APSF expressions are compared to verify the 
correctness of the proposed APSF. Next, WIDTH values 
calculated by the proposed theory, existing APSF expressions, 
and experimental data are compared to verify the correctness 
and robustness of the proposed atmospheric scattered LF 
sampling theory and the proposed APSF. Subsequently, 
reconstructed scattering images at different sampling rates are 
evaluated to show the effectiveness and robustness of the 
proposed LF sampling theory in both fog chamber and real-
world atmospheric scattering scenarios. Finally, the reduction 
in system complexity is demonstrated by comparing the 

Fig. 4. Acquisition targets and LF spectrum at varying scattering intensities. (a) Depth and relative positions of targets. (b) LF 
spectrum (white region) attenuation at varying optical thicknesses T, and the optimal reconstruction filter in non-scattering 
scenarios is lined in red. 

Fig. 5. Schematic of the LF spectrum in scattering scenarios 
(region in blue), optimal reconstruction filter in non-
scattering scenarios (lined in red), optimal reconstruction 
filter in scattering scenarios (lined in green) and 𝑊𝐼𝐷𝑇𝐻𝑚𝑖𝑛/
2 as the half width at 1/𝑒2 of maxima of the proposed APSF 
in the frequency domain at depth 𝑧𝑚𝑖𝑛 .

Fig. 6. (a) WIDTH, defined as the full width at 1/𝑒2  of 
maxima of the proposed APSF in the frequency domain. (b) 
Energy portions within the full width at different intensity 
points of the proposed APSF at varying optical thickness in 
the frequency domain with the forward scattering parameter 
q = 0.75, The energy portions within the full width at 1/𝑒2 of 
the maxima corresponds to the energy portions within the 
proposed WIDTH. 
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camera spacing in actual LF atmospheric descattering systems 
with the spacing calculated by the proposed theory. 

A. Experimental Setup and Data Acquisition
The experiments are conducted both in an artificial fog

chamber and in real-world scattering scenarios, as shown in 
Fig. 7. The artificial fog chamber (1.5×0.5×0.5m) is lined 
with blackout cloth to eliminate ambient light interference, as 
shown in Fig. 7(a)(b). The setup includes multi-depth targets, 
a light source system (light sources and controller), a fogging 
system, an optical thickness measurement system (laser and 
power meter), and a camera array system (camera array, 
synchronous signal generator, electric displacement platform, 
and controller) as shown in Fig. 7(a)(b). The camera array, 
consisting of 9 cameras (Flir BFS-PGE-16S2; pixel size: 3.45 
× 3.45 µm; image resolution: 1440 × 1080) with 4 mm lenses, 
mounted on an electric displacement platform to achieve 
dense LF acquisition through platform movement. Detailed 
descriptions of the experimental setup are provided in 
Supplementary Material Note 4. The minimum (zmin) and the 
maximum (zmax) scene depth are defined as the distance from 
the acquisition system to the nearest and farthest objects in the 
scene and can be directly measured. An optical thickness 
measurement system, consisting of a laser and a power meter, 
is used to determine the optical thickness T of scattering 
scenarios via the Beer-Lambert Law [38] (details in 
Supplementary Material Note 4.3). The forward scattering 
parameter q used in the reconstruction experiments is set to 
0.75, a value widely adopted in atmospheric scattering 
reconstruction [31-33]. To enhance the quality of LF data 
acquisition, the camera array system is calibrated for both 
color and attitude to ensure color consistency and address 
translational and rotational errors between cameras, as detailed 
in Supplementary Material Note 5. In real-world atmospheric 
scattering scenarios, a drone equipped with a camera (pixel 

size: 3.76 × 3.76 µm; image resolution: 5472 × 3648; focal 
length: 8.8 mm) is used to capture LF data, as illustrated in 
Fig. 7(c), details in Section IV.F. 

B. Comparison of APSF Analytical Expressions
The accuracy of the proposed APSF analytical expression,

which integrates acquisition system, is validated by 
comparison with existing models. Ground truth is generated 
by solving the radiative transport equation [31] within the 
simulation environment, which is configured with a camera 
featuring a 4 mm focal lens, 1440 × 1080 image resolution, 
and a pixel size of 3.45 × 3.45 µm. The proposed APSF is 
compared with the state-of-the-art models—Metari’s APSF 
[32], Wang’s APSF [33], Deng’s APSF[39], Tang’s APSF[40] 
and Zhang’s APSF [41]—under varying optical thicknesses T 
and forward scattering parameters q, as shown in Fig. 8. These 
benchmark models are widely recognized, extensively 
validated, and represent the latest advances in analytical APSF 
capable of direct image data processing. Here, the widely used 
typical optical thickness values (T=1.2, 1.5, 2, 4), representing 
mild to strongly dense atmospheres and effectively illustrating 
variations in APSF shapes, are selected for the experiments 
[31-33]. Additionally, forward scattering parameters q=0.2 
(aerosols), q=0.75 (haze) and q=0.9 (fog), which represent 
typical weather conditions, are chosen to validate the APSF 
performance [31-33]. These parameter selections are widely 
adopted and representative in existing literature, ensuring the 
comparability and relevance of the results. 

As illustrated in Fig. 8, the proposed APSF perform well for 
the different optical thicknesses T and forward scattering 
parameters q. small T and q (e.g., T = 1.2 and q = 0.2). 
However, as for comparison APSFs, as T increases (e.g., 
greater than 1.5), the error in Metari’s APSF increases rapidly 
due to not considering the mapping relationship between the 
radiation angles in the APSF and the image plane, as well as 
the parameters of the acquisition system. Wang’s APSF 

Fig. 7. Experimental setup and layout of fog scattering scenarios in both artificial fog chamber and real-world scattering
scenarios. (a) Artificial fog chamber (1.5m×0.5m×0.5m) providing scattering scenarios; camera array system comprising a 
camera array, synchronous signal generator, electric displacement platform, and controller for LF data capture. (b) Top view of 
the artificial fog chamber and internal experimental setup: multi-depth targets, light source system (light sources and 
controllers), fogging system and optical thickness measurement system (laser and power meter). (c) An illustration of a drone 
flying along a predetermined path, capturing LF data in real-world atmospheric scattering scenarios. 
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performs better by refining the mapping between GGD 
parameters (p and σ) and scattering parameters (T and q) from 
both shape similarity and numeric reasonability. Additionally, 
Deng's APSF, Tang's APSF and Zhang’s APSF also 
demonstrate subpar performance. In contrast, by establishing 
an accurate mapping relationship and integrating the 
acquisition system, the proposed APSF achieves enhanced 
accuracy. Furthermore, by using a modified GGD for more 
precise description, it demonstrates good qualitative 
agreement with ground truth, as shown in Fig. 8. Quantitative 
evaluation using Pearson linear correlation coefficient (PLCC) 
[42], root mean square error (RMSE) [43] and mean absolute 
error (MAE) [44], averaged over APSF expressions at T from 
1.05 to 10 and q from 0 to 1, is presented in TABLE I. The 
proposed APSF achieves the highest PLCC, and the lowest 
RMSE and MAE, demonstrating superior correctness and 
robustness in modeling scattering propagation. 

C. Light Field Sampling Theory and APSF in Atmospheric Scattering
Scenarios 

This experiment demonstrates the correctness and 
robustness of the LF sampling theory and the proposed APSF 
analytical expression by comparing the WIDTH calculated by 
the proposed theory, existing APSF analytical expressions and 
experimentally obtained data under various optical thicknesses 
and targets. Here, three color images (Fig. 9(a)) are placed at z 
= 0.79m, 0.86m, and 0.95m in the fog chamber. Within the 
optical thickness range of T = 0 to 2.1, scattered light field 
data are captured using a moving camera array under varying 
scattering intensities, with each dataset comprising 179 views 
spaced 2 mm apart. 

The LF spectrum at 𝑧𝑚𝑖𝑛  = 0.79m in both non-scattering
and scattering scenarios is extracted, and the attenuation term 
𝑒−(𝜎𝑓𝛺𝑣/2)𝑝  (gray dots in Fig. 9(b)) is obtained through
element-wise division, with a fitted curve represents the 
distribution of them (blue curve in Fig. 9(b)). Comparisons of 
experimental WIDTH obtained from attenuation term and 
theoretical WIDTH are shown in Fig. 9(b). Metari’s APSF [32] 
and Wang’s APSF [33] are used to calculate the WIDTH for 
comparison by substituting the proposed APSF in the 
derivation of WIDTH, the results are shown in Fig. 9(b). 

In Fig. 9(b), all WIDTH values align well at T = 0.5. As T 
increases to 1.2, errors in Metari’s APSF WIDTH and Wang’s 
APSF WIDTH become more significant compared to the 

Fig. 8. Accuracy comparison of the proposed APSF under
varying optical thicknesses T and forward scattering 
parameters q, with v representing the coordinate on the image 
plane. 

TABLE I 
PERFORMANCE COMPARISON OF THE PROPOSED APSF WITH 
METARI’S APSF [32], WANG’S APSF [33], DENG’S APSF 

[39], TANG’S APSF [40] AND ZHANG’S APSF [41] 

PLCC RMSE MAE

Metari’s APSF [32] 0.7730 0.4046 0.3410 

Wang’s APSF [33] 0.8541 0.3439 0.2910 

Deng’s APSF [39] 0.7852 0.3910 0.3294 

Tang’s APSF [40] 0.8026 0.3927 0.3212 

Zhang’s APSF [41] 0.7858 0.6521 0.6170 

Proposed APSF 0.9834 0.0504 0.0361 

Fig. 9. Acquisition targets and attenuation term comparison. (a) Depth and relative positions of acquisition targets. (b)
Attenuation term at 𝑧𝑚𝑖𝑛  and its experimental WIDTH compared with Metari’s APSF WIDTH, Wang’s APSF WIDTH and
proposed APSF WIDTH at different optical thicknesses for three color image targets.
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T = 1.2, q = 0.9 T = 1.5, q = 0.9 T = 2, q = 0.9 T = 4, q = 0.9

T = 1.2, q = 0.2 T = 1.5, q = 0.2 T = 2, q = 0.2 T = 4, q = 0.2
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proposed APSF WIDTH. As scattering intensity T increases to 
2.1, the experimental WIDTH decreases, with the proposed 
APSF WIDTH remains accurate and consistent with the 
experimental results, unlike the erroneous values from 
Metari’s APSF WIDTH and Wang’s APSF WIDTH. Although 
Wang’s APSF refines the mapping between GGD parameters 
and scattering parameters by considering both shape similarity 
and numeric reasonability, along with Metari’s APSF, it still 
fails to establish an accurate mapping relationship and does 
not consider the acquisition system. Benefiting from this 
mapping and integrating acquisition system parameters, the 
proposed APSF accurately describes the attenuation of the LF 
spectrum in atmospheric scattering scenarios, with an average 
error of only 1.5%. This experiment confirms the correctness 
of the proposed LF sampling theory and APSF expression 
under different optical thicknesses. Additionally, robustness is 
verified using complex 3D objects, with accurate results still 
obtained (details in Supplementary Material Note 6). 

D. Minimum Light Field Sampling Rate and Atmospheric
Descattering Results in Fog Chamber 

In this experiment, the effectiveness and robustness of the 
LF sampling theory are evaluated by comparing atmospheric 
descattering performance using representative LF atmospheric 
descattering methods at various sampling rates under different 
objects, scene depths, and scattering intensities. Three color 
images are placed at z = 0.79m, 0.86m, and 0.95m in the fog 
chamber (Fig. 10(a)). Scattered LF data are captured using a 
moving camera array under varying scattering intensities, 
within the optical thickness T at 0.79m ranging from 1.2 to 4, 
with each dataset comprising 179 views spaced 2 mm apart. 
These captured views are used to construct LFs with varying 
sampling rates. Three representative LF atmospheric 
descattering methods are applied—volumetric focus [11] in 
the frequency domain, Peplography [2], and LFI [7] in the 
spatial domain—to Targets 1, 2, and 3, respectively. In this 
experiment, Peplography, a photon-counting-based method, 
has its window size for estimating the scattering media set to 
150 × 150 pixels and an expected ballistic photon count of 
50,000 for reconstruction. The LFI approach is based on 
refocusing techniques, enhancing the target signal at the given 
depth and weakening the scattering effects at other depths to 
achieve atmospheric descattering. The volumetric focus 
method uses hyperfan filtering across the 4D light field data to 
effectively eliminate scattering components beyond the target 
reconstruction depth, thereby reinforcing the desired signals 
within the reconstruction depth range. Consequently, we set 
the target depths of z = 0.79m, 0.86m, and 0.95m as the 
reconstruction depths for these three methods to reconstruct 
the targets. The reconstruction results at various camera 
spacings (i.e., distances between viewpoints, which equivalent 
to the sampling rates) are shown in Fig. 10(b)-(d). Quantitative 
indicators, cross correlation [45], structural similarity (SSIM) 
[46] and peak signal-to-noise ratio (PSNR) [46], are calculated
to compare the reconstruction results. Cross correlation
measures the degree of linear alignment between two images,
offering a complementary perspective on their performance.

SSIM evaluates the structural similarity, which is crucial for 
assessing perceptual quality. Meanwhile, PSNR reflects the 
ratio between the maximum possible signal and the noise. The 
inflection point of the curve is identified as the experimental 
minimum LF sampling rate. Comparisons of the proposed and 
experimental minimum LF sampling rates are shown in Fig. 
10(e)-(g), and for different scattering intensities in Fig. 11. 

From the volumetric focus reconstruction results in Fig. 
10(b), it is observed that when the spacing is 8 mm and 18 mm
—exceeding the proposed minimum LF sampling rate—the 
house outline is sharp and aliasing-free. However, at spacings 
of 24mm and 30mm, aliasing stripes appear due to insufficient 
sampling. Fig. 10(e) reveals an inflection point where image 
quality significantly deteriorates as camera spacing increases 
and sampling rate decreases, aligning well with the proposed 
minimum LF sampling rate. Similarly, Peplography and LFI 
results in Fig. 10(c) and (d) show clear reconstructions above 
the proposed minimum LF sampling rate while blurriness and 
aliasing occur below it. Fig. 10(f) and (g) further confirm that 
the proposed sampling rate aligns well with experimental 
results across different methods and distances. Benefitting 
from accurate modeling of the LF in scattering scenarios based 
on the proposed APSF analytical expression, these results 
indicate the effectiveness of the LF sampling theory in 
different LF atmospheric descattering methods. 

In Fig. 11, the robustness of the proposed theory is 
demonstrated across varying optical thicknesses. Building 
upon typical optical thickness values, we extended the range 
by adding additional optical thicknesses T and conducted 
experiments within T=1.2 to 4. Fig. 11(a) shows that the 
proposed and experimental minimum LF sampling rates for 
volumetric focus reconstruction of Target 1 are consistent at 
optical thicknesses T=1.2 and 2. Fig. 11(b) and (c) present 
similar correspondences for Peplography on Target 2 and LFI 
on Target 3 at optical thicknesses T=1.5 and 4, and T=3 and 
3.5, respectively. These results confirm the robustness of the 
proposed LF sampling theory across various reconstruction 
methods and optical thicknesses. 

To further demonstrate the robustness of the proposed 
theory, additional experiments are conducted on 3D targets 
and more complex 3D metal targets, as shown in Fig. 12 and 
Fig. 13, respectively. In Fig. 12, it is clearly shown that the 
proposed and experimental minimum light field sampling rates 
align consistently across different reconstructions, even for 3D 
targets. For the more complex 3D metal targets presented in 
Fig. 13, the proposed theory remains accurate despite 
increased complexity and the presence of reflections. 
Furthermore, the scene depth range is varied in Fig. 14, and 
the results also confirm the validity of the proposed minimum 
light field sampling rates. These results illustrate the strong 
robustness and wide applicability of the proposed theory. 

E. Comparisons of LF descattering method guided by the proposed
atmospheric scattered LF sampling theory and traditional single-
image methods 

To demonstrate the superior performance of the LF 
descattering method, we conduct a comparative analysis with 
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traditional single-image descattering methods. The target is 
positioned at z = 0.86m within a fog chamber (Fig. 15), and 
scattered images are captured at varying optical thicknesses T 
at 0.79m ranging from 1.8 to 3, with each dataset comprising 
179 views spaced 2 mm apart. The conventional single-image 
descattering methods, SLP [16], UNTV [17] and 

DeScatteringNN [47], serve as comparison methods to 
reconstruct the scattered image, while the proposed 
atmospheric scattered LF sampling theory guides Peplography 
in the LF descattering process. The reconstructed images, 
along with their corresponding cross-correlation, SSIM and 
PSNR values, are shown in Fig. 15. 

Fig. 10. Acquisition targets and reconstruction results at different sampling rates. (a) Depth and relative positions of 
acquisition targets. (b)-(d) Reconstruction results for Target 1, Target 2, and Target 3 using volumetric focus, Peplography, and 
LFI, respectively, at varying camera spacings (i.e., distances between viewpoints, which equivalent to the sampling rates) 
when T = 2.3. (e)-(g) Cross-correlation (CC), SSIM and PSNR of reconstruction results for Target 1, Target 2, and Target 3 
using volumetric focus, Peplography, and LFI, respectively, at varying sampling rates when T = 2.3, including the proposed 
and experimentally minimum LF sampling rate.

Fig. 11. Cross-correlation (CC), SSIM, and PSNR of reconstruction results. (a) Quantitative metrics of volumetric focus 
reconstruction for Target 1 at varying sampling rates. (b) Quantitative metrics of Peplography reconstruction for Target 2 at 
varying sampling rates. (c) Quantitative metrics of LFI reconstruction for Target 3 at varying sampling rates.
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Fig. 12. Acquisition 3D targets and reconstruction metrics. (a) Depth and relative positions of targets. (b-d) Cross-correlation
(CC), SSIM, and PSNR for volumetric focus (Target 1), Peplography (Target 2), and LFI (Target 3) reconstructions at varying 
sampling rates, respectively. 

Fig. 13. Acquisition complex 3D metal targets and reconstruction metrics. (a) Depth and relative positions of targets. (b-d) 
Cross-correlation (CC), SSIM, and PSNR for volumetric focus (Target 1), Peplography (Target 2), and LFI (Target 3) 
reconstructions at varying sampling rates, respectively. 

Fig. 14. Acquisition targets at different scene depth and reconstruction metrics. (a) Depth and relative positions of targets. (b-d)
Cross-correlation (CC), SSIM, and PSNR for volumetric focus (Target 1), Peplography (Target 2), and LFI (Target 3) 
reconstructions at varying sampling rates, respectively. 
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As shown in Fig. 15, SLP, UNTV and DeScatteringNN 
exhibit limited effectiveness in mitigating scattering effects, 
particularly as the optical thickness increases. The 
reconstructions produced by these methods suffer from 
significant noise and a loss of fine details, resulting in lower 
cross-correlation, SSIM and PSNR scores. Notably, when 
optical thickness T reaches 3, SLP, UNTV and 
DeScatteringNN fail to adequately reconstruct the target 
image, highlighting their limitations under severe scattering 
conditions. In contrast, the LF descattering method 
consistently outperforms these traditional techniques, 
delivering reconstructions with enhanced detail preservation, 
sharper edges, and greater fidelity to the ground truth. This is 
reflected in the higher cross-correlation, SSIM and PSNR 
values across all levels of optical thickness, underscoring the 
robustness and effectiveness of the LF method in maintaining 
image integrity in challenging scattering environments. These 

results position the LF descattering method as a promising 
solution for high-fidelity descattering applications. 

F. Minimum Light Field Sampling Rate and Atmospheric
Descattering Results in Real-world Atmospheric Scattering
Scenarios 

The theory’s effectiveness and robustness are evaluated in 
real-world scattering scenarios. A drone with a camera (pixel 
size: 3.76 × 3.76 µm; image resolution: 5472 × 3648; focal 
length: 8.8 mm) captured LF data, as shown in Fig. 16(a). 11 
views (Fig. 16(b) and Fig. 16(c)) and 9 views (Fig. 16(d) and 
Fig. 16(e)), each separated by 4.1 m, are captured from real-
world atmospheric scattering scenarios. The scattering 
intensities, estimated from the captured scatter images using 
the Chinese National Standard Specifications for Surface 
Meteorological Observation—Meteorological Visibility 
(GB/T 35223-2017) [48], are T = 4.9, 3.94, 4.24, and 4.58, 
respectively. The forward scattering parameter q used in the 
experiments is set to 0.75, a value widely adopted in 
atmospheric scattering reconstruction [31-33]. The 
corresponding scene depth, ranging from 140m (zmin) to 150m 
(zmax), is obtained using drone positioning data and visual 
ranging techniques. LFI is used for reconstruction, and 
dehazing quality index (DHQI) [49] is calculated to evaluate 
the results (Fig. 16(b)-(e)). 

The reconstruction results in Fig. 16(b) confirm that high-
quality reconstructions are achieved when the sampling rate 
above the proposed minimum sampling rate, with no detail 
loss. However, as camera spacing increases, leading to a 
sampling rate drop below the proposed rate, high-frequency 
aliasing degrades image quality. Besides, the DHQI evaluation 
reveals a significant inflection point at a camera spacing of 8.2 
m, indicating a strong correspondence between the 
experimental data and the proposed minimum LF sampling 
rates. Moreover, the test results from other scenarios (Fig. 
16(c)-(e)) show similar trends, further demonstrating the 
effectiveness and robustness of the proposed LF sampling 
theory. This demonstrates the effectiveness and robustness of 
the proposed LF sampling theory even in complex real-world 
atmospheric scattering scenarios, achieving high-quality 
reconstruction at the proposed minimum sampling rate and 
enhancing reconstruction efficiency. 

G. Comparison of Actual Light Field Atmospheric Descattering
Systems

The role of LF sampling theory in reducing system 
complexity is discussed by comparing camera spacing in 
existing LF atmospheric descattering systems with that 
calculated using the proposed theory. TABLE II presents the 
parameters of existing LF atmospheric descattering systems 
and the calculated camera spacings using the proposed theory, 
as well as Metari’s APSF [32], Wang’s APSF [33], Deng’s 
APSF [39], Tang’s APSF [40] and Zhang’s APSF [41] for 
comparison. 

TABLE II demonstrates that Metari’s, Wang’s, Deng’s, 
Tang’s and Zhang’s APSF models underperform with minimal 
spacing in all scenarios, while the proposed model achieves 

Fig. 15. Visual comparison of descattering methods between 
traditional single-image descattering methods (SLP [16], 
UNTV [17] and DeScatteringNN [47]) and light field 
descattering method under varying optical thickness T, with 
cross-correlation (CC), SSIM and PSNR metrics displayed 
beneath each reconstruction. 

Ground Truth Scatter Image
T = 1.8 

Scatter Image
T = 2.3

Scatter Image
T = 3

LF

CC   0.4803
SSIM 0.2651

PSNR 18.48dB

CC   0.8196
SSIM 0.4360

PSNR 19.84dB

CC   0.9796
SSIM 0.8621

PSNR 21.04dB

UNTV

CC   0.1130
SSIM 0.0617
PSNR 9.21dB

CC   0.2652
SSIM 0.1419

PSNR 10.85dB 

CC   0.4803
SSIM 0.2651

PSNR 12.86dB 

SLP

CC   0.3142
SSIM 0.1242

PSNR 13.34dB

CC   0.6095
SSIM 0.2630

PSNR 15.46dB

CC   0.8196
SSIM 0.4360

PSNR 18.23dB

DeScatteringNN

CC   0.4338
SSIM 0.1840

PSNR 13.30dB

CC   0.7365
SSIM 0.2184

PSNR 13.95dB

CC   0.8805
SSIM 0.2699

PSNR 14.19dB
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Fig. 16. Acquisition targets and reconstruction results in real-world atmospheric scattering scenarios at varying sampling rates.
(a) An illustration of a drone flying along a predetermined path, capturing LF data in real-world scattering scenarios. (b-e) LFI
reconstruction of scattered LF data at varying sampling rates, with corresponding DHQI values, including the proposed and 
experimentally determined minimum LF sampling rates.

TABLE II 
Parameters of Existing LF Atmospheric Descattering Systems and Comparative Analysis of Camera Spacing in LF 
Atmospheric Descattering Systems Based on Existing APSF Analytical Models and Proposed LF Sampling Theory 

(a)

DroneFlight Path

4.1m spacing 8.2m spacing 12.3m spacing 16.4m spacingScatter Image

(e)

4.1m spacing 8.2m spacing 12.3m spacing 16.4m spacingScatter Image

(d)

4.1m spacing 8.2m spacing 12.3m spacing 16.4m spacing 20.5m spacingScatter Image

(c)

4.1m spacing 8.2m spacing 12.3m spacing 16.4m spacing 20.5m spacingScatter Image

(b)

System f Δv zmin zmax T q Δt 
Metari’s 
APSF Δt 

[32] 

Wang’s 
APSF Δt 

[33] 

Deng’s 
APSF Δt 

[39] 

Tang’s 
APSF Δt 

[40] 

Zhang’s 
APSF Δt 

[41] 
Proposed Δt 

System 1 [3] 5mm 16.2μm 0.49m 0.769m 3.78 0.715 5mm 0.89mm 0.89mm 0.89mm 0.89mm 0.89mm 5.37mm 

System 2 [4] 6mm 2.2μm 0.35m 0.5m 5.2 0.83 5mm 0.86mm 0.86mm 0.86mm 0.86mm 0.86mm 4.55mm 

System 3 [50] 52mm 4.9μm 0.368m 0.42m 3.76 0.715 5mm 0.55mm 0.55mm 0.55mm 0.55mm 0.55mm 11.7mm 

System 4 [5] 105mm 3.85μm 0.109m 0.116m 2.17 0.715 2mm 0.12mm 0.12mm 0.12mm 0.12mm 0.12mm 6.44mm 

System 5 [2] 50mm 3.85μm 0.109m 0.116m 2.17 0.715 2mm 0.26mm 0.26mm 0.26mm 0.26mm 0.26mm 6.44mm 
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maximal spacing in most cases, indicating the least sampling 
requirement. This superiority is attributed to its precise 
modeling of the scattered LF and the seamless integration with 
the acquisition system. On average, the proposed model 
requires 24.77 times less camera usage compared to the 
comparison APSF models, saving 95.4% of cameras in one 
dimension and 99.8% in two dimensions, without sacrificing 
quality. Compared to existing systems, it saves 53.5% in one 
dimension and 78.4% in two dimensions, highlighting its 
benefit for LF atmospheric descattering applications. 

V. CONCLUSION 
In this paper, a theory for the minimum light field (LF) 

sampling rate in scattering scenarios is derived from the 
proposed atmospheric point spread function (APSF) analytical 
expression. This theory is aimed at achieving optimal 
atmospheric descattering quality at the minimum LF sampling 
rate. The proposed APSF incorporates the camera model, 
radiative transfer equation, and modified generalized Gaussian 
distribution (GGD) to effectively characterize multiple 
scattering. It allows direct derivation for any scattering 
parameters without infinite series, ensuring comprehensive 
adaptability to various acquisition systems through the 
integration of the system model, and offers greater accuracy 
compared to existing analytical expressions. The minimum LF 
sampling rate in atmospheric scattering scenarios is 
determined from the LF spectrum, which combines the 
proposed APSF with scene and acquisition system 
information. By employing this theory, the optimal 
atmospheric descattering quality can be achieved with 
minimal sampling. Experimental results across various object 
types, scene depths, and scattering intensities confirm the 
correctness, effectiveness, and robustness of the proposed LF 
sampling theory. Additionally, its applicability in real-world 
atmospheric scattering scenarios is validated. Moreover, it can 
save an average of 78.4% of the acquisition cameras at the 
same processing quality. This work provides a framework for 
capturing LF data in scattering environments, significantly 
enhancing the application of LF atmospheric descattering 
methods. 

Although the proposed APSF performs effectively in most 
atmospheric scattering scenarios, it still encounters certain 
limitations. Specifically, when processing images with strong 
scattering, two major challenges arise: (a) the target signal is 
obscured by scattering noise, making it difficult for the 
detector to capture; (b) strong scattering results in amplified 
image noise. These challenges significantly impact the 
performance of APSF, which is one of the issues to address in 
future work. 
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